
Chapter 13

Asymptotic Notation

13.1 Definitions

Analysis of algorithms is concerned with estimating how many steps various algo-
rithms make while solving problems of various sizes. In particular, given an algorithm,
we want to make statements like “For input of size n, the algorithm will terminate in
at most f(n) steps.” If we try to accurately estimate the number of steps, a cumber-
some bound like

f(n) =
1

11
n3 + 12n2 + 15

1

2
n + log3 n + 17

might arise. Such precision only complicates matters and does not add to our under-
standing of the algorithm’s efficiency. The following notational convention allows to
simplify bounds by concentrating on their “main terms.”

Definition 13.1.1. For two functions f, g : N+ → R,

• f(n) = O(g(n)) if and only if there exists a positive constant c ∈ R and a
constant n0 ∈ N, such that |f(n)| ≤ c|g(n)| for all n ≥ n0.

• f(n) = Ω(g(n)) if and only if g(n) = O(f(n)).

• f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Asymptotic notation does wonders to the above ugly bound: We can now say that
f(n) = Θ(n3), which makes it easier to see how the number of steps performed by
the algorithm grows as n gets larger and larger. Notice how the asymptotic notation
swallowed all the constants and lower-order terms! To prove that f(n) = Θ(n3) we
need to show that there exist positive constants c1, c2 ∈ R and a constant n0 ∈ N,
such that c1n

3 ≤ f(n) ≤ c2n
3 for all n ≥ n0. (We dropped the absolute values that

come from Definition 13.1.1 since f(n) and n3 are nonnegative for n ∈ N+.) We can
take n0 = 1, c1 = 1

11
, and c2 = 45.6. For the lower bound, clearly f(n) ≥ 1

11
n3 when

n ∈ N+. For the upper bound, note that in this range n3 ≥ n2 ≥ n ≥ log3 n, and
n3 ≥ 1. All these inequalities can be proved by elementary algebraic manipulation.
Thus we get

f(n) ≤ 1

11
n3 + 12n3 + 15

1

2
n3 + n3 + 17n3 ≤ 45.6n3.

61

We can also perfectly well say that f(n) = O(n4) or that f(n) = O(n25); these
bounds are considerably less informative but correct. On the other hand, the bound
f(n) = O(n2) (or even f(n) = O(n2.99)) is not correct. Indeed, we have seen that
f(n) ≥ 1

11
n3. On the other hand, for any positive constant c ∈ R, 1

11
n3 ≥ cn2 for all

n ≥ 11c. Thus there is no positive constant c ∈ R and a constant n0 ∈ N so that
f(n) ≤ cn2 for all n ≥ n0.

Asymptotic notation is asymmetric, so we never write a statement like O(g(n)) =
f(n); the O, Ω, and Θ are always present on the right side of the equality sign.
(However, we can write n2 + O(n) = Θ(n2), for example.) The right way to think
of statements like f(n) = O(g(n)) and f(n) = Ω(g(n)) is as inequalities; always
remember what the notation means according to Definition 13.1.1.

13.2 Examples and properties

The following asymptotic inequalities can all be easily proved and are very useful. Do
the proofs as an exercise. You might find induction or tools from elementary calculus
helpful for some of these. You’ll also need simple properties of logarithms, like the
identity

loga n =
logb n

logb a
.

• For two constants u, v ∈ R, if u < v then nu = O(nv). (“A bigger power
swallows a smaller one.”)

• If f(n) is a degree-d polynomial in n then f(n) = O(nd). If the coefficient of nd

in f(n) is nonzero then f(n) = Θ(nd).

• For any real constants b > 1 and p, np = O(bn). (“An exponential swallows a
power.”)

• For any real constants q > 0 and p, (ln n)p = O(nq). (“A power swallows a
logarithm.”)

• For any real constants a, b > 1, loga n = Θ(logb n). This implies that we can
write bounds like O(log n), O(n log n), etc., without specifying the base of the
logarithm. (“Asymptotic notation swallows bases of logarithms.”)

We conclude this lecture by demonstrating how new asymptotic inequalities can
be derived from existing ones. These are often used in the analysis of algorithms,
although they are so much a part of the folklore that they are rarely referred to
explicitly.

Proposition 13.2.1. The following hold:

(a) If f(n) = O(g(n)) and p ∈ N is a constant then p · f(n) = O(g(n)).

(b) If f(n) = O(h(n)) and g(n) = O(w(n)) then f(n)+g(n) = O(max(|h(n)|, |w(n)|)).

62

(c) If f(n) = O(h(n)) and g(n) = O(w(n)) then f(n) · g(n) = O(h(n) · w(n)).

Proof. We prove each claim individually.

(a) If f(n) = O(g(n)) then there exists a positive constant c ∈ R and a constant
n0 ∈ N, such that |f(n)| ≤ c|g(n)| for all n ≥ n0. Thus for p ∈ N, |p · f(n)| =
p|f(n)| ≤ (pc)|g(n)| for all n ≥ n0, and by Definition 13.1.1, p · f(n) = O(g(n)).

(b) If f(n) = O(h(n)) and g(n) = O(w(n)) then there exist two positive constants
c1, c2 ∈ R and constants n1, n2 ∈ N, such that |f(n)| ≤ c1|h(n)| for all n ≥ n1

and |g(n)| ≤ c2|w(n)| for all n ≥ n2. Then

|f(n)+g(n)| ≤ |f(n)|+|g(n)| ≤ c1|h(n)|+c2|w(n)| = (c1+c2) max(|h(n)|, |w(n)|)

for all n ≥ max(n1, n2), and by Definition 13.1.1, f(n)+g(n) = O(max(|h(n)|, |w(n)|)).

(c) If f(n) = O(h(n)) and g(n) = O(w(n)) then there exist two positive constants
c1, c2 ∈ R and constants n1, n2 ∈ N, such that |f(n)| ≤ c1|h(n)| for all n ≥ n1

and |g(n)| ≤ c2|w(n)| for all n ≥ n2. Then

|f(n) · g(n)| = |f(n)| · |g(n)| ≤ (c1|h(n)|) · (c2|w(n)|) = (c1c2)|h(n) · w(n)|

for all n ≥ max(n1, n2), and by Definition 13.1.1, f(n) · g(n) = O(h(n) · w(n)).

63

